
Document title Document type
DynamicServiceOrchestration Core System SysD
Date Version
2025-06-19 5.0.0
Author Status
Tamás Bordi DRAFT
Contact Page
tbordi@aitia.ai 1 (9)

DynamicServiceOrchestration Core System

System Description

Abstract
This document provides system description for the DynamicServiceOrchestration Core System.

www.arrowhead.eu

www.arrowhead.eu

Document title Version
DynamicServiceOrchestration Core System 5.0.0
Date Status
2025-06-19 DRAFT

Page
2 (9)

Contents

1 Overview 3

1.1 Significant Prior Art . 3

1.2 How This System Is Meant to Be Used . 4

1.3 System functionalities and properties . 4

1.4 Important Delimitations . 5

2 Services produced 6

2.1 service serviceOrchestration . 6

2.2 service serviceOrchestrationPushManagement . 6

2.3 service serviceOrchestrationLockManagement . 6

2.4 service serviceOrchestrationHistoryManagement . 6

2.5 service monitor . 6

3 Security 7

4 References 8

5 Revision History 9

5.1 Amendments . 9

5.2 Quality Assurance . 9

www.arrowhead.eu

www.arrowhead.eu

Document title Version
DynamicServiceOrchestration Core System 5.0.0
Date Status
2025-06-19 DRAFT

Page
3 (9)

1 Overview

This document describes the DynamicServiceOrchestration Core System, which exists to find matching providers
for the consumer’s specification within an Eclipse Arrowhead Local Cloud (LC) and optionally, in other Arrowhead
clouds by collaborating with other Core/Support systems. This can be achieved by various strategies, but the
DynamicServiceOrchestration Core System implements the dynamic orchestration strategy. This recommended
system may provide the data storage functionality for the information related to provider reservation.

The rest of this document is organized as follows. In Section 1.1, we reference major prior art capabilities
of the system. In Section 1.2, we describe the intended usage of the system. In Section 1.3, we describe
fundamental properties provided by the system. In Section 1.4, we describe delimitations of capabilities of the
system. In Section 2, we describe the abstract services produced by the system. In Section 3, we describe the
security capabilities of the system. s

1.1 Significant Prior Art

The strong development on cloud technology and various requirements for digitisation and automation has led
to the concept of Local Clouds (LC).

”The concept takes the view that specific geographically local automation tasks should be encapsulated and
protected.” [1]

A service orchestration system is a central component in any Service-Oriented Architecture (SOA). In
applications, the use of SOA for a massive distributed System of Systems requires orchestration. It is utilised to
dynamically allow the re-use of existing services and systems in order to create new services and functionality.

There are some key differences, even on conceptual level, between the previous versions (Orchestrator
4.6.x) and this version:

• The previous versions contained three (or two in earlier versions) kind of orchestration strategies: a
store containing simple, peer-to-peer rules, an other store containing more flexible rules and a dynamic
orchestration method which used the live data of the Service Registry to achieve its goal. The current
version separates the three strategies into three different systems (but with the same orchestration service
operations), and the Local Cloud’s administrator can decide which strategy to support for their use case.

• The previous versions were named the system as Orchestrator. Because this expression has a different
meaning in some related domains, it is decided that the current version uses the name
<Strategy>ServiceOrchestration to avoid confusion.

• There was no data storage separation requirement: the Orchestrator’s data storage was interconnected to
other systems’ storage. In the current version, data storage separation is mandatory.

• Only the orchestration pull was supported in which the consumer could start an orchestration process for
itself. The current version also supports orchestration push: the consumers can subscribe to a service
orchestration (or an other Support/Application system can subscribe them) and after the subscription and
whenever a system notifies the DynamicServiceOrchestration system, it performs the orchestration for the
related subscribers.

• The Quality-of-Service (QoS) Manager component was embedded into the Orchestrator (only QoS data
comes from a Support system). The current version moves these functionalities into a separate Support
system (which also be responsible to collect and store QoS data).

• X.509 certificate trust chains was used as authentication mechanism. The current version can support
any type of authentication methods by using a dedicated Authentication Core system.

www.arrowhead.eu

www.arrowhead.eu

Document title Version
DynamicServiceOrchestration Core System 5.0.0
Date Status
2025-06-19 DRAFT

Page
4 (9)

1.2 How This System Is Meant to Be Used

DynamicServiceOrchestration is a recommended core system of Eclipse Arrowhead Local Cloud and is
responsible for finding and pairing service consumers and providers.

There are two ways to use the offered functionality:

• An application that want to consume a service should ask the DynamicServiceOrchestration to find one
or more accessible providers that meet the necessary requirements. The DynamicServiceOrchestration
returns the information that the application needs to consume the specified service.

• An application can subscribe for orchestration with the necessary requirements (or can be subscribed
by an other Application/Support system). Whenever a system notifies the DynamicServiceOrchestration
system, it does the orchestration and sends the orchestration information to the subscriber on the specified
channel. Optionally, subscribers can ask that an orchestration process run and return immediately after
the subscription.

The information that is provided to the consumer whenever an orchestration is done depends on the
orchestration strategy. In case of dynamic orchestration strategy, the DynamicServiceOrchestration system has
to contact with the ServiceRegistry (and optionally with other Core/Support systems) to perform the orchestration
so in the response it can return everything what is needed for the consumer to perform a service operation
consumption (access details, authorization tokens, etc...).

1.3 System functionalities and properties

1.3.1 Functional properties of the system

DynamicServiceOrchestration solves the following needs to fulfill the requirements of orchestration.

• Enables the application and Core/Support systems to find the appropriate providers to consume their
services.

• Enables the application and Core/Support systems to subscribe/unsubscribe to repeated orchestration
(orchestration push).

• Enables other application and Core/Support systems to notify the ServiceOrchestration system to orches-
trate for the related subscribers.

• Enables other application and Core/Support systems to subscribe/unsubscribe consumers to repeated
orchestrations.

1.3.2 Non functional properties of the system

• (Condition: Authentication system is present in the Local Cloud: the DynamicServiceOrchestration system
will use Authentication system’s identity service to verify the requester system before responding to its
request.

• (Condition: ConsumerAuthorization system is present in the Local Cloud): if the consumer is not authorized
to use a service provider the orchestration service removes the appropriate provider from the response;

• (Condition: ConsumerAuthorization system is present in the Local Cloud): orchestration service automati-
cally adds every necessary tokens to the response (if the related provider requires it);

www.arrowhead.eu

www.arrowhead.eu

Document title Version
DynamicServiceOrchestration Core System 5.0.0
Date Status
2025-06-19 DRAFT

Page
5 (9)

• (Condition: Gatekeeper and Gatepath system is present in the Local Cloud): inter-cloud orchestration
is possible between two Local Clouds and the necessary communication tunnel will be built during the
orchestration process;

• (Condition: Any system with Quality-of-service evaluation capabilities is present in the Local Cloud): during
orchestration Quality-of-Service requirements can be considered;

• (Condition: TranslationManager system is present in the Local Cloud): protocol and data model translation
can be used to fulfill orchestration requirements.

1.3.3 Data stored by the system

In order to achieve the mentioned functionalities, DynamicServiceOrchestration is capable to store the following
information set:

• Orchestration locks: A storage to manage ongoing provider reservations or manual orchestration locks.
It consists of a service instance ID, the owner system name and a timestamp which marks the end of lock.

• Orchestration history: A storage to save data about the performed orchestration processes. It consists
of an orchestration type, a requester system name, a target system name, a service definition and a
timestamp.

1.4 Important Delimitations

• If the Local Cloud does not contain an Authentication system or does not using X.509 certificates,
there is no way for the DynamicServiceOrchestration to verify the requester system. In that case, the
DynamicServiceOrchestration will consider the authentication data comes from the requester as valid.

• If the Local Cloud does not contain a ServiceRegistry, then DynamicServiceOrchestration system is not
able to perform the orchestration process.

• To take full advantage of its functionality, other Core/Support systems are required to being deployed.

www.arrowhead.eu

www.arrowhead.eu

Document title Version
DynamicServiceOrchestration Core System 5.0.0
Date Status
2025-06-19 DRAFT

Page
6 (9)

2 Services produced

2.1 service serviceOrchestration

The purpose of this service is to find information about providers that meet the requirements. It also provided
subscription functionality to repeated orchestrations (orchestration push). The service is offered for both
application and Core/Support systems.

2.2 service serviceOrchestrationPushManagement

The purpose of this service is to manage orchestration push subscriptions in bulk. It also allows to signal the
DynamicServiceOrchestration system to orchestrate for the related subscribers. The service is offered for
Core/Support systems.

2.3 service serviceOrchestrationLockManagement

The purpose of this service is to add, remove and query active orchestration locks. An orchestration lock can be
made automatically during the orchestration process in order to reserve an actual service or manually if a higher
entity with management access has any reason to prevent a service from being orchestrated. The service is
offered for Core/Support systems.

2.4 service serviceOrchestrationHistoryManagement

Recommended service. Its purpose is to give information about the orchestration processes performed by the
system. The service is offered for Core/Support systems.

2.5 service monitor

Recommended service. Its purpose is to give information about the provider system. The service is offered for
both application and Core/Support systems.

www.arrowhead.eu

www.arrowhead.eu

Document title Version
DynamicServiceOrchestration Core System 5.0.0
Date Status
2025-06-19 DRAFT

Page
7 (9)

3 Security

For authentication, the DynamicServiceOrchestration utilizes an other Core/Support system, the Authentication
system’s service to verify the identities of the requester systems. If no Authentication system is deployed into
the Local Cloud, the DynamicServiceOrchestration trusts the requester system self-provided identity.

For authorization, the system uses an other Core System, the ConsumerAuthorization system to decide
whether a consumer can use its services or not. If the ConsumerAuthorization Core System is not present in the
Local Cloud, then the DynamicServiceOrchestration may allow for anyone in the Local Cloud to use its services.
The following service operations can always be used without any authorization rules:

• serviceOrchestration service’s pull operation,

• serviceOrchestration service’s subscribe operation,

• serviceOrchestration service’s unsubscribe operation.

Furthermore, if the ConsumerAuthorization system is deployed in the Local Cloud, the DynamicService-
Orchestration system will use the appropriate service to check whether the consumer can consume the required
service of a specific provider during the orchestration process.

The implementation of the DynamicServiceOrchestration can decide about the encryption of the connection
between the DynamicServiceOrchestration and other systems.

www.arrowhead.eu

www.arrowhead.eu

Document title Version
DynamicServiceOrchestration Core System 5.0.0
Date Status
2025-06-19 DRAFT

Page
8 (9)

4 References

[1] J. Delsing and P. Varga, Local automation clouds. Boca Raton: Taylor & Francis Group, 2017, p. 28.
[Online]. Available: https://doi.org/10.1201/9781315367897

www.arrowhead.eu

https://doi.org/10.1201/9781315367897
www.arrowhead.eu

Document title Version
DynamicServiceOrchestration Core System 5.0.0
Date Status
2025-06-19 DRAFT

Page
9 (9)

5 Revision History

5.1 Amendments

No. Date Version Subject of Amendments Author

1 YYYY-MM-DD 5.0.0 Xxx Yyy

5.2 Quality Assurance

No. Date Version Approved by

1 YYYY-MM-DD 5.0.0

www.arrowhead.eu

www.arrowhead.eu

	Overview
	Significant Prior Art
	How This System Is Meant to Be Used
	System functionalities and properties
	Important Delimitations

	Services produced
	service serviceOrchestration
	service serviceOrchestrationPushManagement
	service serviceOrchestrationLockManagement
	service serviceOrchestrationHistoryManagement
	service monitor

	Security
	References
	Revision History
	Amendments
	Quality Assurance

